.. _pitagora_card: Pitagora ======== .. figure:: ../img/warning3.png :align: center :class: no-scaled-link :height: 150px .. figure:: ../img/spacer.png :align: center :class: no-scaled-link :height: 20px Pitagora is the new EUROfusion supercomputer hosted by **CINECA** and currently built in the CINECA's headquarter in Casalecchio di Reno, Bologna, Italy. The cluster is supplied by Lenovo corp. and is composed of two partitions: A general purpose partition cpu-based named **DCPG** and an accelerated partition based on NVIDIA H100 accelerators named **Booster**. The specific guide for the **Pitagora** cluster contains unique information that deviates from the general behavior described in the HPC Clusters sections. Access to the System -------------------- The machine is reachable via ``ssh`` (secure Shell) protocol at hostname point: **login.pitagora.cineca.it**. The connection is established, automatically, to one of the available login nodes. It is possible to connect to **Pitagora** using one the specific login hostname points: * login01-ext.pitagora.cineca.it * login02-ext.pitagora.cineca.it * login03-ext.pitagora.cineca.it * login04-ext.pitagora.cineca.it * login05-ext.pitagora.cineca.it * login06-ext.pitagora.cineca.it .. warning:: **The mandatory access to Pitagora is the two-factor authetication (2FA)**. Get more information at section :ref:`general/access:Access to the Systems`. System Architecture ------------------- The system, supplied by Lenovo, is based on two new specifically-designed compute blades, which are available throught two distinct SLURM partitios on the Cluster: * **GPU** blade based on NVIDIA NVIDIA H100 accelerators - **Booster** partition. * **CPU**-only blade based on AMD Turin 128c processors - **Data Centric General Purpose (DCGP)** partition. The overall system architecture uses NVIDIA Mellanox InfiniBand High Data Rate (HDR) connectivity, with smart in-network computing acceleration engines that enable extremely low latency and high data throughput to provide the highest AI and HPC application performance and scalability. Hardware Details ^^^^^^^^^^^^^^^^ .. tab-set:: .. tab-item:: Booster .. list-table:: :widths: 30 50 :header-rows: 1 * - **Type** - **Specific** * - Models - Lenovo SD650-N V3 * - Racks - 7 * - Nodes - 168 * - Processors/node - 2x Intel Emerald Rapids 6548Y 32c 2.5 GHz * - CPU/node - 64 * - Accelerators/node - 4x NVIDIA H100 SXM 80GB HBM2e * - Local Storage/node (tmfs) - * - RAM/node - 512 GiB DDR5 5600 Mhz * - Rmax - 27.27 PFlop/s (`top500 `_) * - Internal Network - Nvidia ConnectX-6 Dx 100GbE * - Storage (raw capacity) - 2 x 7.68 GiB SSDs (HW RAID 1) .. tab-item:: DCGP .. list-table:: :widths: 30 50 :header-rows: 1 * - **Type** - **Specific** * - Models - Lenovo SD665 V3 * - Racks - 14 * - Nodes - 1008 * - Processors/node - 2x AMD Turin 128c - Zen5 microarch 2.3 GHz * - CPU/node - 256 * - Accelerators/node - (none) * - Local Storage/node (tmfs) - * - RAM/node - 768 GiB DDR5 6400 Mhz * - Rmax - 17 Pflop/s (`top500 `_) * - Internal Network - Nvidia ConnectX-6 Dx 100GbE * - Storage (raw capacity) - Job Managing and SLURM Partitions --------------------------------- In the following table you can find informations about the SLURM partitions for **Booster** and **DCGP** partitions. .. seealso:: Further information about job submission are reported in the general section :ref:`hpc/hpc_scheduler:Scheduler and Job Submission`. .. tab-set:: .. tab-item:: Booster +------------------+------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ | **Partition** | **QOS** | **#Nodes/#per job** | **Walltime** | **#Max Nodes/#per user** | **Priority** | **Notes** | +==================+========================+===========================+==============+============================+==============+=====================================+ | boost_fua_prod | normal | max = 16 | 24:00:00 | 32 | 40 | | + +------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ | | boost_qos_fuadbg | max = 2 | 00:10:00 | 2 | 80 | | + +------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ | | boost_qos_fuaprod | min = 17 (full nodes) | 24:00:00 | 32 | 60 | runs on 96 nodes (GrpTRES) | | | | max = 32 | | | | | + +------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ | | boost_qos_fualprod | max = 3 | 4-00:00:00 | 3 | 40 | | +------------------+------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ .. tab-item:: DCGP +------------------+------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ | **Partition** | **QOS** | **#Nodes/#per job** | **Walltime** | **#Max Nodes/#per user** | **Priority** | **Notes** | +==================+========================+===========================+==============+============================+==============+=====================================+ | dcgp_fua_prod | normal | max = 64 | 24:00:00 | 64 | 40 | | + +------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ | | dcgp_qos_fuadbg | max = 2 | 00:10:00 | 2 | 80 | | + +------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ | | dcgp_qos_fuaprod | min = 65 (full nodes) | 24:00:00 | 128 | 60 | runs on 640 nodes (GrpTRES) | | | | max = 128 | | | | | + +------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+ | | boost_qos_fualprod | max = 6 | 4-00:00:00 | 12 | 40 | | +------------------+------------------------+---------------------------+--------------+----------------------------+--------------+-------------------------------------+