
Introduction to Leonardo
Data Centric and General Purpose (DCGP)

February 18th, 2025

Caterina Caravita
c.caravita@cineca.it

CINECA - High Performance Computing Department

Outline

➢ Leonardo infrastructure

➢ Access HPC resources and filesystems

➢ Software environment

➢ Programming environment

➢ Production environment

➢ Final remarks

Leonardo infrastructure and login nodes

Atos BullSequana X430-E6

➢ Processors (dual-socket): 2x CPU Intel Whitley

ICP06, 32 cores Intel Ice Lake (64 cores/node),

2.4 GHz

➢ RAM: 512 (16x32) GB RAM DDR4 3200 MHz

➢ Disk: 14 TB HDD

➢ NO GPUs

Data Centric and General Purpose
(CPU-only) partition

BullSequana X2140 three-node CPU Blade

➢ 1536 nodes: lrdn[1537-4992]

➢ Processors (dual-socket): 2x CPU Intel Xeon 8480+,

56 cores Intel Sapphire Rapids (112 cores/node),

3.8 GHz (turbo enabled)

➢ RAM: 512 (16 x 32) GB DDR5 4800 MHz

➢ Disk: 1x SSD 3.84 TB M.2 NVMe

➢ Internal network: PCIe Gen5,

 1x port HDR100 100Gb/s network interface

Peak performance: about 13 PFlops

Inter-node network topology

Dragonfly+ topology

based on Nvidia Mellanox Infiniband HDR,
bidirectional bandwidth of 200 Gb/s
(shared between Leonardo Booster and DCGP)

➢ All nodes are divided into cells
➢ Non-blocking, two-layer Fat Tree within the cells
➢ All to all connection between cells

➢ Adaptive routing algorithm: SLURM will take care
of the “best”-possible node allocations

Storage

Fast Tier
5.4 PB, 1.4 TB/s

NVMe storage (SSD disks)

➢ HOME, PUBLIC, FAST SCRATCH

Capacity Tier
106 PB, read 744 GB/s - write 620 GB/s

HDD disks

➢ WORK, LARGE SCRATCH, DRES

Outline

➢ Leonardo infrastructure

➢ Access HPC resources and filesystems

➢ Software environment

➢ Programming environment

➢ Production environment

➢ Final remarks

Become a new HPC user

● Register on the UserDB Portal: https://userdb.hpc.cineca.it/

● Get associated to an active account

→ Principal Investigator (PI): we create the account and set you as PI on the UserDB

→ Collaborator: ask your PI to associate you to the account on the UserDB

● Request the “HPC Access” on UserDB

→ You will receive two mails:

 one with your HPC username, and one to set an HPC password and configure the 2FA

https://wiki.u-gov.it/confluence/display/SCAIUS/Get+Started

https://userdb.hpc.cineca.it/
https://wiki.u-gov.it/confluence/display/SCAIUS/Get+Started

Any access to the cluster

● Request the ssh certificate to our Identity Provider via
the smallstep client from your local shell.
→ A web page will open on the browser and you will be
asked to insert a One-Time Password (OTP) from the app
→ Valid for 12 hours

● Access to the cluster via ssh:

 $ ssh <username>@login.leonardo.cineca.it

Access to Leonardo

First time

● Activate the 2FA: authenticate on our
Identity Provider at https://sso.hpc.cineca.it
using your HPC username and password.
→ You will need an app to generate
authentication codes (e.g. Google
Authenticator)

● Install and configure the smallstep client
(depending on your OS)

The access to CINECA HPC systems requires a two-factor authentication (2FA).

https://wiki.u-gov.it/confluence/display/SCAIUS/2%3A+Access+to+the+Systems

Slides, June 7th, 2023

https://sso.hpc.cineca.it
https://wiki.u-gov.it/confluence/display/SCAIUS/2%3A+Access+to+the+Systems
https://wiki.u-gov.it/confluence/display/SCAIUS/EUROfusion+users%3A+Marconi+and+Leonardo+environments?preview=/796951345/796951348/Slides_2fa.pdf#EUROfusionusers:MarconiandLeonardoenvironments-2FAAccess

Access to Leonardo

$ ssh <username>@login.leonardo.cineca.it

Motto of the day

➔ Short system description

➔ “In evidence” messages

➔ “Important” messages

(e.g. scheduled maintenances)

$PUBLIC
● 50 GB per user, only on Leonardo
● user specific (permissions 755)
● permanent
● no backup

$HOME
● 50 GB per user
● user specific
● permanent
● daily backup (soon)

Filesystems
$SCRATCH

● no quota
● user specific
● temporary (data removed after 40 days)
● no backup

$PUBLIC
● 50 GB per user, only on Leonardo
● user specific (permissions 755)
● permanent
● no backup

$HOME
● 50 GB per user
● user specific
● permanent
● daily backup (soon)

Filesystems

$WORK
● quota per account (default 1 TB)
● account specific
● permanent
● no backup

$SCRATCH
● no quota
● user specific
● temporary (data removed after 40 days)
● no backup

$FAST
● similar to $WORK
● fast I/O
● only on Leonardo

$PUBLIC
● 50 GB per user, only on Leonardo
● user specific (permissions 755)
● permanent
● no backup

$HOME
● 50 GB per user
● user specific
● permanent
● daily backup (soon)

Filesystems

$WORK
● quota per account (default 1 TB)
● account specific
● permanent
● no backup

$SCRATCH
● no quota
● user specific
● temporary (data removed after 40 days)
● no backup

All the filesystems are based on Lustre
→ Check your areas, disk usage and quota: $ cindata

$FAST
● similar to $WORK
● fast I/O
● only on Leonardo

$TMPDIR
● local on nodes
● job specific
● fast I/O

DRES
● long storage on demand
● shared among accounts and platforms (not Leonardo)

https://wiki.u-gov.it/confluence/display/SCAIUS/LEONARDO+User+Guide#LEONARDOUserGuide-DisksandFilesystems

https://wiki.u-gov.it/confluence/display/SCAIUS/LEONARDO+User+Guide#LEONARDOUserGuide-DisksandFilesystems

Outline

➢ Leonardo infrastructure

➢ Access HPC resources and filesystems

➢ Software environment

➢ Programming environment

➢ Production environment

➢ Final remarks

Module environment
Any available software is offered on the clusters in a module environment.
The modules are organized in functional categories and collected in different profiles.

Installed software

Module

Category

Profile

Compilers
Libraries
Tools
Applications
Data

Base is the default profile:
automatically loaded after login,

containing basic modules
for programming activities

Programming (base): compilation, profiling, debugging…
Domain (chem-phys, astro, bioinf…): production activities

Module environment
$ module avail

Almost all the modules on Leonardo have been installed with Spack, and they report the Spack package name.

Module environment

$ module load profile/astro
$ module avail

$ module show <module_name>/<version>

$ module help <module_name>/<version>

Print information about the module, such as dependencies, paths

Print the help of the software, its brief description and examples
of the use

Loaded profiles
are added to the environment

Module environment

$ modmap -m <module_name>

$ module load <profile>

$ module load <module_name>/<version>

$ module list

Detect all profiles, categories and modules available
(e.g. different releases)

List all the profiles and modules loaded so far

all the dependencies are automatically loaded;
we recommend to specify the module version!

You will find modules compiled to support GPUs and modules suitable only for CPUs.
You can check the compiler in the full name of the module, where the version is specified
(e.g. gromacs/2022.3--intel-oneapi-mpi--2021.10.0--oneapi–2023.2.0).
Remind that modules compiled with nvhpc, cuda should be used only on the Booster partition, while modules
compiled with gcc, intel, oneapi are suitable for running on the DGCP partition.

Important!

Install new software
In case you don't find a software, you can choose to install it by yourself.

● Install without sudo permissions

● Install with conda/pip in conda/virtual env

➢ Note: the official conda repository is no more reachable from Cineca clusters.

You can rely on conda-forge repository, e.g.

$ module load anaconda3/2023.09-0

$ conda create -y -c conda-forge -n <env_name> --override-channels

● Install with Spack

Write to superc@cineca.it if you need guidance on the installation or if you want to request a new module.

mailto:superc@cineca.it

Install with Spack
 “Spack” environment provided by the package manager Spack and available as modules.

$ modmap -m spack

for installation of Spack packages for Leonardo Booster
(based on nvhpc or gcc compilers)

for installation of Spack packages for Leonardo DCGP
(based on intel, oneapi or gcc compilers)

A new spack version 0.22.2 will be available soon, only one for Booster and DCGP,

together with a new software stack

Load the suitable module for the partition (Booster or DCGP) you will work on.

$ module load spack/<version>

➢ setup-env.sh file is sourced

➢ $SPACK_ROOT is initialized

➢ spack command is added to your PATH, and some nice command line integration tools as well

➢ Folder /spack-<version> is created into your $PUBLIC area (on Leonardo, and $WORK on the other
clusters) and it contains some subfolders created and used by spack during the phase of the packages
installation:

● sources cache: /cache
● software installation root: /install
● modulefiles location: /modules
● user scope: /user_cache

https://wiki.u-gov.it/confluence/display/SCAIUS/5%3A+User+Environment+Customization

Install with Spack

https://wiki.u-gov.it/confluence/display/SCAIUS/5%3A+User+Environment+Customization

Install with Spack

$ spack list <package_name>

$ spack info <package_name>

$ spack spec -Il <package_name>

e.g. $ spack spec -Il scorep

$ spack install <package_name>

$ spack load <package_name>

Check if the package is available for installation with Spack

Show available versions, building variants and dependencies

Show version, compiler, dependencies, building variants with which
the package will be installed (-Il for installation status and hash)
→ options can be specified

Install the package
→ options as spec command

Load the package installed to use it (you can also create a module)

Some fundamental Spack commands

Outline

➢ Leonardo infrastructure

➢ Access HPC resources and filesystems

➢ Software environment

➢ Programming environment

➢ Production environment

➢ Final remarks

Programming environment
Compilers and MPI libraries are available as modules in profile/base.
Use the ones suitable for the architecture:
on Leonardo DCGP, Intel oneapi compilers and libraries are recommended.

Compilers
➢ GCC (GNU compilers: gcc, g++, gfortran)
➢ NVHPC (ex hpc-sdk, ex PGI + CUDA → NVIDIA compilers: nvc, nvc++, nvcc, nvfortran)
➢ CUDA
➢ INTEL ONEAPI (Intel compilers: icc, icpc, ifort. Oneapi compilers: icx, icpx, ifx) → no Nvidia GPU support

MPI libraries
➢ OpenMPI (GNU/NVHPC compilers)
➢ Intel Oneapi MPI (Intel compilers) → no CUDA-aware

Check with commands
modmap -m,
module av,

module show,
module help,

and man

https://wiki.u-gov.it/confluence/display/SCAIUS/DCGP+Section#DCGPSection-Programmingenvironment

https://wiki.u-gov.it/confluence/display/SCAIUS/DCGP+Section#DCGPSection-MPIenvironment

https://wiki.u-gov.it/confluence/display/SCAIUS/DCGP+Section#DCGPSection-Programmingenvironment
https://wiki.u-gov.it/confluence/display/SCAIUS/DCGP+Section#DCGPSection-MPIenvironment

Update of the software stack
A new spack version will be available soon, only one for Booster and DCGP, together with a new software stack.

Latest versions
➢ Spack 0.21.0 (different modules for Booster and DCGP)
➢ Software stack mainly compiled with gcc 12.2, cuda 12.1, nvhpc 23.11, intel-oneapi-compilers 2023.2.1

(intel 2021.10.0, oneapi 2023.2.0)
➢ MPI libraries: openmpi 4.1.6, intel-oneapi-mpi 2021.10.0

New versions (soon)
➢ Spack 0.22.2 (same module for Booster and DCGP)
➢ Software stack mainly compiled with gcc 12.2, cuda 12.2, nvhpc 24.5, intel-oneapi-compilers 2024.1.0

(intel 2021.10.0, oneapi 2024.1.0)
➢ MPI libraries: openmpi 4.1.6, hpcx-mpi 2.19, intel-oneapi-mpi 2021.12.1

Outline

➢ Leonardo infrastructure

➢ Access HPC resources and filesystems

➢ Software environment

➢ Programming environment

➢ Production environment

➢ Final remarks

Login and compute nodes
CINECA HPC clusters are shared among many users, so a responsible use is crucial!

Login nodes

➢ Interactive runs on login nodes are strongly discouraged and should be limited to short test runs
→ 10 minutes cpu-time limit

➢ Avoid running large and parallel applications on login nodes
➢ No GPUs on login nodes

Compute nodes

➢ Long production jobs should be submitted on compute nodes using the scheduler → SLURM
➢ Jobs can be submitted in two main ways: via batch mode and via interactive mode
➢ Nodes shared, but the allocated resources (cores, RAM, $TMPDIR) are assigned in an exclusive way

Resources per node
Each node → max resources you can request per node

➢ 112 cores (cpus) ntasks-per-node * cpus-per-tasks ≤ 112
➢ 494000 MB of RAM (memory)
➢ 3 TB of temporary local memory on $TMPDIR (gres=tmpfs)

The accounting considers
● the requested number of CPUs
● the requested memory on RAM
● the requested memory on $TMPDIR

and calculates the number of equivalent cores → it takes the maximum among
● number of cpus
● memory / memory-per-core (= requested memory / memory-per-node * cores-per-node)
● tmpfs / tmpfs-per-core (= requested tmpfs / tmpfs-per-node * cores-per-node)

Eurofusion resources
Serial partition → lrd_all_serial (default, free)
2 dedicated login-type nodes

● max 4 physical cores (hyperthreading x2: max 8 virtual cpus)
● max walltime: 4 h

Debug partition → dcgp_fua_dbg
2 compute nodes dinamically allocated

● max 2 nodes
● max walltime: 10 min

Production partition → dcgp_fua_prod
258 compute nodes dinamically allocated

● max 16 nodes
● max walltime: 24 h

Big production QOS: dcgp_qos_fuabprod

● min 17 full nodes - max 64 nodes
● max walltime: 24 h

Eurofusion resources

Additional options

Low priority qos: qos_fualowprio

● max 16 nodes
● max walltime: 8 h
● automatically added to the active accounts with exhausted budget (free, zero queue priority)

Low priority account: FUA38_LOWPRIO_0

● for active projects with non-exhausted budget, after request to superc@cineca.it
● you also need to add the qos qos_fualowprio

Special qos: qos_special

● if needed more than 64 nodes and/or 24h
● after request to superc@cineca.it and EF approval

mailto:superc@cineca.it
mailto:superc@cineca.it

Submit jobs with SLURM

#!/bin/bash

#SBATCH --nodes=1 # nodes
#SBATCH --ntasks-per-node=4 # tasks per node
#SBATCH --cpus-per-task=8 # cores per task
#SBATCH --mem=494000MB # memory on RAM
#SBATCH --gres=tmpfs:200GB # memory on $TMPDIR
#SBATCH --time=1:00:00 # time limit (d-hh:mm:ss)
#SBATCH --account=<account_name> # account
#SBATCH --partition=<partition_name> # partition name
#SBATCH --qos=<qos_name> # quality of service

module load <module_name>

 srun my_application

#SBATCH directives
(also contracted syntax,

e.g. -N for --nodes)

Loading modules and setting variables

Launch executable
(for parallel applications, use srun or mpirun)

Batch mode

● Write a batch script like the example

● Launch the batch script
$ sbatch [options] start.sh

● The job is queued and scheduled

shell

Submit jobs with SLURM
Interactive mode

● Ask for the needed resources with the
same SLURM directives with srun or
salloc

● The job is queued and scheduled but,
when executed, the standard input,
output, and error streams are
connected to the terminal session
from which srun or salloc were
launched

● Run your application from that
prompt

● Exit from the terminal session: $ exit

Non MPI programs

$ srun -N 1 --ntasks-per-node=8 --cpus-per-task=4 -t 01:00:00
-p <partition_name> -A <account_name> --pty /bin/bash

The session starts on the compute node: [username@lrdn4553 ~]$

Also MPI programs

$ salloc -N 1 --ntasks-per-node=8 --cpus-per-task=4 -t 01:00:00
-p <partition_name> -A <account_name>

A new session starts on the login node: [username@login02 ~]$

Submit jobs with SLURM
Only on Leonardo “diskful” nodes, it’s possible to increase the space of the $TMPDIR area.
Remind that the area is local to nodes, and job specific (i.e. “temporary”): created at the begging of a job and
deleted at its end, and accessible only by the user who launched the job.

Specify the space on $TMPDIR=/tmp (default=10GB):

#SBATCH --gres=tmpfs:200GB
on the local disks on lrd_all_serial nodes (max 1 TB) and dcgp_usr_prod compute nodes (max 3 TB).

It is possible to use the $TMPDIR=/scratch_local space also on the login nodes (14 TB shared among users,
remove your files once they are not requested anymore).

On the diskless boost_usr_prod compute nodes, the $TMPDIR=/tmp area is hosted on the RAM, with a fixed
size of 10 GB (no increase is allowed, and the gres=tmpfs resource is disabled).

Remind that for the DCGP jobs the requested amount of gres=tmpfs resource contributes to the
consumed budget, changing the number of accounted equivalent core hours.

https://wiki.u-gov.it/confluence/display/SCAIUS/LEONARDO+User+Guide#LEONARDOUserGuide-DisksandFilesystems

https://wiki.u-gov.it/confluence/display/SCAIUS/LEONARDO+User+Guide#LEONARDOUserGuide-DisksandFilesystems

Submit jobs with SLURM

#SBATCH --account=<account_name> or -A <account_name>
Specifies the account with a budget of core-hours available to run jobs.

Note that the account name changed from Marconi to Leonardo DCGP, with the addition of a final “_0”

Remind also that, on Leonardo, you can check the status of your accounts with

$ saldo -b Leonardo Booster

$ saldo -b --dcgp Leonardo DCGP

Accounts defined on Booster can only be used on Booster partitions (boost_fua_prod, boost_fua_dbg),
and accounts defined on DCGP can only be used on DCGP partitions (dcgp_fua_prod, dcgp_fua_dbg).

Monitor your jobs with SLURM
$ squeue -u <username> or $ squeue --me
Shows the list of all your scheduled jobs, along with their status (pending, running, closing, …).
Also, shows you the jobID required for other SLURM commands.

$ scontrol show job <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about the reason it has not started yet
and, if it is scheduled with top priority, you will get an estimated start time.

$ scancel <job_id>
Removes the job (queued or running) from the scheduled job list by killing it.

$ sinfo (e.g. $ sinfo -o "%10D %a %20F %P")

Provides information about SLURM nodes and partitions.

$ sacct <options> <job_id> (e.g. $ sacct -Bj <job_id>)

Displays accounting data for all jobs and job steps in the SLURM job accounting log or SLURM database.

Outline

➢ Leonardo infrastructure

➢ Access HPC resources and filesystems

➢ Software environment

➢ Programming environment

➢ Production environment

➢ Final remarks

Final remarks
★ Login nodes should only be used for installation (connection to external network!), compilation, and small tests.

No GPUs on login nodes!

★ Consider to use Leonardo Booster for applications on GPUs
and Leonardo DCGP for applications only on CPUs.

★ Remind to check your accounts budget with “saldo -b --dcgp” on Leonardo DCGP.

★ Recommended compilers are gcc and Nvidia compilers (nvhpc, cuda) for Leonardo Booster,
and gcc and Intel (intel, oneapi) for Leonardo DCGP.

★ Rely on the already available software stack, tested and optimized for the cluster architecture,
and on Spack for autonomously installing additional software.

https://wiki.u-gov.it/confluence/display/SCAIUS/HPC+at+CINECA%3A+User+Documentation
Write to superc@cineca.it in case of need!

https://wiki.u-gov.it/confluence/display/SCAIUS/HPC+at+CINECA%3A+User+Documentation
mailto:superc@cineca.it

Thank you

Q&A
1.

Q: As far as I know, EUROfusion users are accounted with node hours instead of core hours. Can you please explain
how are we accounted in Leonardo DCGP?

A: Both on Marconi and Leonardo the accounting is in terms of core-hours.
The difference is that on Marconi the nodes were allocated in exclusive way by default, so even if you requested less
than an entire node, you consumed as the entire node. On Leonardo instead (both Booster and DCGP), the nodes are
in principle shared with other users, they are not allocated in exclusive way by default (you can specify “--exclusive”),
so you consume the core-hours equivalent to the requested resources.

See slide 28.
For example, if you request 56 cores per one hour on dcgp_usr_fuaprod partition, you only consume 56 core-hours.
If you request only 2 cores, but half of the space per node in tmpfs, i.e. 1.5 TB, you still consume as 56 cores (half of
the node).

Q&A
2.

Q: What best to use for I/O? Fast scratch, scratch or tmpdir?

A: It depends on your application. The WORK and SCRATCH areas (on HDD) can always be used, but if your
application take relevant advantage from a higher I/O performance, you can use the FAST area (on SSD). TMPIDIR
also assure a fast communication because it is hosted on disk which is local to the node. Moreover, in case of DCGP
compute nodes, the local disk is also SSD (while on login-type nodes the local disk is HDD, and on Booster compute
nodes there is no local disk and TMPDIR space is hosted on RAM). Remind that $TMPDIR directory is created at the
beginning of the job by the SLURM prologue, and deleted at the end of the job by the SLURM epilogue.

Q&A
3.

Q: What to know for porting from Marconi to Leonardo a production code that has been running for years without
problems on Marconi and other computers?

A: From the point of view of the data transfer from Marconi to Leonardo, we suggest to exploit the datamover service:
https://wiki.u-gov.it/confluence/display/SCAIUS/Datamover
From the point of view of the compilation and execution of the code, we remind that Marconi and Leonardo DCGP have
both Intel processors. On Leonardo DCGP we suggest to rely on Intel/Oneapi compilers, both for the compilation and
for the libraries/applications/tools you need. In case you face errors and you need some help in finding the right
software stack, write to superc@cineca.it.

https://wiki.u-gov.it/confluence/display/SCAIUS/Datamover
mailto:superc@cineca.it

Q&A
4.

Q: Can I use openmpi if oneapi does not work for me?

A: Yes, you can. In general, GNU compilers are suitable also for the DCGP partition. We suggest to use Intel/Oneapi
if possible, because they may offer better performance, since they are optimized for Intel architecture (CPUs in this
case).

Q&A
5.

Q: What is the difference between asking for ram and for tmpdir?

A: $TMPDIR space represents a proper storage space (similarly to WORK, SCRATCH, FAST, HOME), to be used only
during the job.

Q&A
6.

Q: Is there a default for “$SBATCH --gres=tmpfs:” ?
If no tmpdir space is needed, will it not be accounted for?

A: The default is 10 GB.
The resource tmpfs is accounted as well, but beeing the 10 GB less than 1/112 of the total amount of tmpfs on DCGP
compute nodes (which is 3TB), if you ask for 1 core for one hour, for example, you will be carged for 1 core-hour.
Otherwise, if you ask for 3 TB and 1 core, this will be the same of asking for the full nodes, meaning that you will be
accounted for 112 core-hours.

Q&A
7.

Q: In case if we need more RAM memory per process, in the past we were able to request half of the MPI
processes/node and use the complete node RAM, how is this handled in Leonardo?

A: This is possible on Leonardo as well. You can request indeed, for example, half of the cores per node (56 cores on
DCGP compute nodes) and the whole RAM of the node (494000 MB). The accounting will consider that you are using
the entire node, so the equivalent of 112 cores will be accounted.

Q&A
8.

Q: How do I ask all the memory?

A: You can explicitly request the maximum RAM, for example
#SBATCH --mem=494000
(MB) on DCGP compute nodes, or
#SBATCH --mem=0
which means the maximum possible on the node.

